師資
個人簡介
李才恒, 講席教授。研究領域包括代數(shù)組合數(shù)學和置換群論。1997年畢業(yè)于西澳大利亞大學,獲博士學位。1998年國際組合數(shù)學及其應用協(xié)會Kirkman獎章。曾任澳大利亞國家伊莉莎白二世研究員,美國Ohio州立大學終身教職,南開大學講席教授(兼職),云南大學特聘教授(兼職),北京大學講席教授,和西澳大學講座教授。
他在置換群論和代數(shù)圖論方向做出了開創(chuàng)性的貢獻,是國際學術帶頭人。先后解決了多個世界著名的重要問題,包括關于包含交換正則子群的本原置換群的100年老的Burnside問題。
代表文章
◆ Finite CI-groups are solvable, Bull. London Math. Soc. 31 (1999), 419-423.
◆ The finite vertex-primitive and vertex-biprimitive s-transitive graphs with s>3, Trans. Amer. Math. Soc. 353(2001), 3511-3529.
◆ On partitioning the orbitals of a transitivie permutation groups, Trans. Amer. Math. Soc. 355 (2003), 637-653.
◆ The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc. 87 (2003), 725-748.
◆ Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2004), 291-317. (with M. Giudici and C. E. Praeger).
◆ On orbital partitions and exceptionality of primitive permutation groups, Trans. Amer. Math. Soc. 356 (2004), 4857-4872 (with R. Guralnick, C.E. Praeger and J. Saxl).
◆ Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
◆ Mobius regular maps, J. Combin. Theory Ser. B, 97(2007), 57-73.
◆ Finite edge primitive graphs, J. Combin. Theory Ser. B 100 (2010), 275-298. (with M. Giudici).
◆ Finite primitive permutation groups with soluble stabilisers and edge-primitive 4-arc transitive graphs, Proc. London Math. Soc. (3) 103 (2011), 441-472 (with Hua Zhang).