日本最新精品视频在线播放,少妇高潮太爽了在线视频,91精品国产91热久久久久福利,91蜜桃国产成人精品区在线,狼人综合干日韩欧美,一区二区日本免费中文字幕精品,一区二区无码中文

Faculty

中文       Go Back       Search
MA Ziming
Associate Professor

My research interest lies in the fields of Complex Geometry, Symplectic Geometry, Mathematical Physics, with special emphasis on Mirror Symmetry, which is a mysterious duality between symplectic geometry (A-model) of a Calabi-Yau manifold X and complex geometry (B-model) of its mirror Calabi-Yau manifold Xˇ. The focus of my current research is to unveil mysteries in Mirror Symmetry with viewpoint from the Strominger-Yau-Zaslow proposal.


Publications

11. Tropical Lagrangian multi-sections and smoothing of locally free sheaves on degenerated Calabi-Yau surfaces, (with K. W. Chan and Y. H. Suen) submitted. 

10. Smoothing Pairs Over Degenerate Calabi–Yau Varieties (with K. W. Chan), International Mathematics Research Notices , rnaa212, 2020, https://doi.org/10.1093/imrn/rnaa212 .

9. Geometry of Maurer-Cartan equation near degenerate Calabi-Yaus (with K. W. Chan And N. C. Leung), accepted for publication in Journal of Differential Geometry.

8. Fukaya's conjecture on $S^1$-equivariant de Rham complex, submitted.

7. Fukaya's conjecture on Witten's twisted A_\infty structures, with Kaileung Chan and Naichung Conan Leung, J. Differential Geom. 118(3): 399-455 (July 2021). DOI: 10.4310/jdg/1625860622 . 

6. Scattering diagram from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan and Naichung Conan Leung, Journal of the European Mathematical Society, 2021, DOI: 10.4171/JEMS/1100. 

5. Tropical counting from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan, Transactions of the American Mathematical Society, 2020, https://doi.org/10.1090/tran/8128. 

4. Theta functions from asymptotic analysis on Maurer-Cartan equations, with Matthew Bruce Young and Naichung Conan Leung, International Mathematics Research Notices, rnz220, 2019, https://doi.org/10.1093/imrn/rnz220. 

3. SYZ mirror symmetry from Witten-Morse theory, to be appeared in CMA proceedings. 

2. Lattice points counting via Einstein metrics, with Naichung Conan Leung, Journal of Differential geometry 92 (2012), no. 1, 55-69.

1. Flat branes on tori and Fourier transform in the SYZ programme, with Kaileung Chan and Naichung Conan Leung, Proceedings of the G"okova Geometry-Topology Conference (2011), page 1-31, International press.


革吉县| 克拉玛依市| 三原县| 邛崃市| 广河县| 瑞金市| 红河县| 宿松县| 望城县| 安达市| 兴安盟| 项城市| 湘潭市| 邵武市| 肃南| 信阳市| 二手房| 体育| 广饶县| 南木林县| 和平区| 涿州市| 拉萨市| 唐河县| 老河口市| 盐山县| 墨竹工卡县| 遂宁市| 应用必备| 紫金县| 靖西县| 启东市| 嘉鱼县| 禹城市| 凤庆县| 黑水县| 宝应县| 项城市| 哈密市| 邢台县| 洛南县|